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7.1 System Architecture

Speech understanding can be loosely defined as natural
language understanding with noisy or uncertain input. In
traditional speech recognition the goal is to derive words from
speech signals, while the goal of a speech understanding system is
to understand the intent or meaning of a spoken utterance. Clearly
speech recognition is a component of speech understanding, but
recognition is only the "front end" of the system; natural
language understanding also must be done on the recognized words in
order to represent the intent of the utterance.

The guiding philosophy of RIT's Speech Understanding project
centers on the contention that it is possible for humans to
reliably "read" speech spectrograms. Since this is a cognitive
process and can be "explained" by the person doing it, we believe
it possible to build a knowledge based system containing that
expertise. The overall goal, then is to design and implement a
knowledge based system that reads speech spectrograms.

We view the architecture of this system on two levels, a
"virtual" architecture at the software level and a "physical"
architecture at the hardware level. Most of the work to date has
concentrated on the software architecture, but the acquisition of
two TI Explorers with additional signal processing hardware has
provided us with a good hardware configuration onto which to map
our software architecture.

7.1.1 Software Architecture

The software architecture of the system is highly modular and
largely data-driven. Besides the usual software design and
management concerns, a high degree of modularity was desirable for
other reasons as well. One very pragmatic reason is the fact that
there is a high degree of turnover among the graduate students
working on the project. Graduate students at RIT are required to
complete a Masters thesis, the scope of which is modest compared to
a typical dissertation. Since a typical student will spend at most
a year involved in the project, a highly modular system
architecture allows us to break off relatively small, isolated
chunks of the system for Masters theses.

Another reason for emphasizing small, relatively independent
modules is the current state of flux that characterizes our
available hardware. We are in the process of converting to the TI
Explorer Lisp environment from the Sun UNIX environment. While
this conversion is taking place, we still have thesis work in
progress that will have to be converted at a later time. Keeping
the individual projects small will ease their eventual conversion.

The decision to use a data-driven control strategy was made
under the assumption that reliable feature extraction could be done
in parallel at a low level, eliminating the need for more
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sophisticated (e.g. blackboard) control strategies. We feel that
the goal of real time performance precludes the use of exotic
control strategies and that a largely data-driven approach can
allow enough flexibility, provided that reliable feature extraction
can be done.

The software architecture is summarized by Figure 7-1. A
spoken utterance is digitized by an analog-digital converter to
produce a digitized "oscillogram" of the raw speech sample. The
digitized raw speech is then passed through a fast Fourier
transform to produce a speech spectrogram. This represents the
typical "input" to a human expert, who can "read" a speech
spectrogram, and it can be thought of as the input to our knowledge 0
based system.

The spectrogram is then given to a spectral segmentation
module whose job it is to partition the speech spectrogram into
relatively homogeneous segments. This is the first step taken by
every human expert we have observed reading a spectrogram, and it
basically amounts to drawing vertical lines on the spectrogram
where changes occur. Spectral segmentation is discussed in more
detail in Section 7-2.

The segmented spectrogram is then fed in parallel to a
collection of low level, algorithmic feature extractors. Each of
these modules computes a value or set of values for a specific
feature over the span of the given spectral segment. These modules
are capable of computing their values independently of one another,
which means that a high degree of fine grain parallelism is
possible. This inherent parallelism will be exploited when the
software architecture is mapped onto a suitable hardware
architecture that provides parallel processors. The work currently
being done on these low level feature extractors is covered in
Section 7-2.

After the feature extractors have computed their values, the
continuous spectrogram has essentially been replaced by a discrete
sequence of "feature vectors," one vector for each spectral
segment. These vectors can be thought of as frames in an AI sense,
with slots being features. This representation is more compressed
than the original spectrogram by orders of magnitude, which means
that the enormous amount of data in the original speech signal has
been reduced to a manageable level, without sacrificing useful
information. It is also important to note that after the feature
vector has been generated for a segment, the FFT spectrogram and
the original raw speech are no longer needed.

The spectral segment vectors are then given to a knowledge
based "phoneme" builder, which joins segments to build intermediate
level speech structures. This module can be thought of as doing
knowledge based syntactic pattern recognition. The problem is
syntactic or structural pattern recognition in that small segments
of speech are being "parsed" to generate "phonemes." The module is
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knowledge based in that the approach is to "clone" experts who can
successfully perform this task.

We enclose "phoneme" in quotes because the intermediate level
structures may or may not be actual phonemes in the linguistic
sense. Some traditional phonemes (e.g. fricatives, stops) seem to
be good candidates for intermediate level structures because they
are readily recognizable as classes and, therefore, provide
reliable categories for classification. Other traditional phoneme
classes (e.g. vowels, glides) are harder to pin down and lead to
less reliable classification. Whethev we end up with phonemes,
diphones, other units, or a combination of all of these will be
determined by what units allow us to make the most reliable
identification.

We are currently exploring two approaches to the design of the
knowledge based "phoneme" recognizer. The first approach is
hierarchical in nature and presupposes that we can identify the
category or class of a given spectral segment with a high degree of
reliability. Provided this can be done, a tree-like structure can
be built with the leaf nodes representing specific "phonemes" and
internal nodes representing categories of phonemes that are less
specific the closer they are to the root of the tree (see Figure
7-2).

The second approach to the "phoneme" recognizer is to build an
augmented transition network (ATN) that uses pectral segments as
inputs to fire transitions among states. This approach is
appealing in that it bundles together the problem of deciding the
boundaries between "phonemes" with the problem of identifying the &
actual "phonemes." The hierarchical approach assumes that setting
inter-phoneme boundaries can be done reliably without knowing yet
the identities of the phonemes. While human experts often seem to
be able to do this, it seems more likely that drawing boundaries
and identifying "phonemes" are inextricably linked. The work
already done on a hierarchically based fricative identifier
(covered in Section 7.4) can be incorporated easily into an ATN
based parser since it provides knowledge on hcw to construct the
states in the ATN that pertain to parsing fricatives.

The question of what goes in the algorithmic feature I N
extractors and what goes in the knowledge based recognizers boils k

down to whether a given task can be done well with a "standard" .
algorithm or whether it requires AI techniques. Our philosophy is N
that when a knowledge based recognizer needs to know something
about the spectrogram or the raw speech, this interface to the
spectrogram will be done in one of two ways. If the question about
the spectrogram can be answered algorithmically, a new feature
extraction module is created and added to the set of parallel
feature extractors, and a new slot is created for the feature in
the segment vectors. From a performance point of view, the
calculation of this new feature is "free" in that it is computed in
parallel with all the other algorithmically computed features.

7-5 "
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If the question about the spectrogram requires a knowledge
based approach, an extension is made to the existing knowledge
based recognizer to ask this lower level question. Eventually,
this extension will lead to reasonable "algorithmic" extractors
that will deal directly with the spectrogram. This approach blurs
the typical distinction between feature extraction, which is
traditionally algorithmic, and recognition, which is usually Al
based. We may have some "smart" feature extractors and some "dumb"
recognizers, depending on whether a good algorithm can be developed .'\"' .
to perform the task.

This data-driven organization means that higher level
processes do n ot demand data from lower level processes. Instead, '
the lower level processes always comnute everything they know how
to compute for every speech sample. This obviously requires a
great deal of low level computation, but since that will be don3 in
parallel, it costs processors, not time. The upshot is that high
level processes always have all the data they need to make
decisions, which obviates the need for a direct interface with the
low level feature extractors.

The output of the knowledge based "phoneme" builder is a
string of intermediate level structures -- some combination of
phonemes, diphones, syllables, or other units. These intermediate
strings are given to a "word builder," which tries to partition the
intermediate string into segments that might be words, and then
looks up the potential words in a lexicon of
word/intermediate-string pairs. This module is largely knowledge
based, and its organization has not yet been fixed. A simple
generate-and-test strategy will be tried initially, but we
anticipate that this approach will not provide anything approaching
real-time performance.

A severe problem for the word builder is the uncertainty
inherent in the intermediate strings it gets from the phoneme
builder. Some "phonemes" in a typical intermediate string will be
less certain than others. For example, a typical string might
contain phonemes like "f sound" followed by "a glide" followed by
"something vowel-like" followed by "not a stop." A pure
generate-and-test strategy would have to try each of the words or
word segments that fits this very rough outline and eliminate those
words that do not fit with other words in the utterance that have
alr .ady been recognized. Moreover, the problem of segmenting the
intermediate string is probably as difficult, albeit on a different
level, as the spectral-segmentation problem.

An obvious component of the system is a lexicon that maps
intermediate string segments onto words. At the core of this
lexicon is a fast retrieval module that can look up a given .- ,
intermediate string and return any word(s) that match it. This
retrieval module will be discussed in Section 7.5.

Finally at the highest level of the system, a knowledge based ...- .
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component that does traditional natural language understanding will
derive the intent of the utterance. This clearly will have to be a
domain-specific system that has sufficient knowledge of the domain
of discourse to be able to make sense of an utterance. It's job
will be made more difficult than that of traditional natural
language understanding systems because the words being given to it
may not be correct. Understanding natrual language with uncertain
words is a largely untapped area in natuaral language research.

7.1.2 Hardware Architecture ,

The NAIC was instrumental in helping RIT obtain two TI
Explorer Lisp machines; one of which is equipped with TI's Odyssey
signal processing board. Briefly, the Odyssey board consists of
four TMS 32020 processors and on-board program and data memory
connected with an on-board bus. The board talks to the Explorer
Lisp environment at a hardware level via the Explorer's Nu Bus. At
a software level, access is done via a memory mappea protocol, with
TI-supplied software to facilitate up-loading, down-loading and S
processor control. A D-A/A-D device is being designed by TI to sit
on the Odyssey board and handle speech input and digitization.

With this hardware configuration, it is possible to map the
software architecture onto a hardware architecture that allows the
exploitation of the parallelism inherent in the four TMS 32020
processors. Since these processors were designed especially for
doing low level number crunching in signal. processing environments,
they are ideal for serving as the hardware for computing FFTs and
doing algorithmic based feature extraction. The Explorer/odyssey,
then, provides an ideal hardware configuration onto which to map
the software architecture because it supplies state-of-the-art
processing f,: both low level signal processing and high level AI
programs. During the coming year we will be moving the project
from the Sun system to the Explorer/Odyssey machine.

7.1.3 Future Directions

When the project has been moved to the TI Explorers, we will 6%

finally have a suitable environment for doing real knowledge based B
system development. Up until now our AI tools have been limited to
RuleMaster, an induction based expert system building tool, and
while th4 s is a good tool for a UNIX environment and provides an
excellent testbed for developing phoneme recognizers, it is rather
impoverished when compared to full-blown tools that exist for the
Explorer environment. We plan to move more heavily into the higher
level recognition modules as better tools become available to us.

We also plan to begin exploiting the parallelism provided by
the Odyssey board on the Explorer to map our parallel software
architecture onto the Odyssey's TMS 32020 processors. This hinges
in part on the development of suitable tools for processing speech * -

signals.
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7.2 Analysis/Display Tools and Signal Processing Software

7.2.1 SpeechTool

A speech analysis software package called SpeechTool has been
developed for our Sun 2/130 workstation. The package performs a
variety of different types of spectral analysis and has the
capability to graphically display the results of all of the
commonly used speech-analysis techniques. Graphic capabilities
include the following displays, shown in Figures 7-3 to 7-13:

1. FFT spectrograms (Fig. 7-3b, 7-4a, 7-5e, 7-6e, 7-7c, etc.)
2. LPC spectrograms (Fig. 7-3a) , S
3. Oscillograms (Fig. 7-5d)
4. User-defined measurement functions: For lack of a better

term, a mixed category of derived waveforms that constitute
one measurement per millisecond. Examples include rate of
spectral change (Fig. 7-5a), total energy per 10-msec
speech segment (Fig. 7-5b, 7-5c) and zero-crossing rate
(Fig. 7-8b).

5. Individual FFT spectra for specified frames (Fig. 7-11).
6. 'Waterfall' spectral displays: These displays show how the

LPC or FFT spectrum evolves over time (Fig. 7-12, 7-13).
7. Time (Fig. 7-6d) and frequency markers (Fig. 7-13).

7.2.2 calculating an Auditory Spectrum

As can be seen from the displays in Figures 7-3 to 7-13,
speech analysis consists primarily of determining how the speech
spectrum changes as a function of time. The pLoblem of automatic
phonetic recognition is largely one of relating those patterns of
spectral change to specific phonemes, diphones, syllables, etc.
Because spectral analysis plays Such a central role in speech
recognition research, it is very important that methods be found to
represent the spectrum in a way that will optimize the ability to
accurately categorize the patterns of spectral change.

Most speech recognition systems use linear Fourier spectra or
Linear Predictive Coding spectra. Although these kinds of analyses
correspond roughly to the kinds of signal analyses performed by the
human auditory system, the correspondence is only approximate. The
goal of our spectral analysis work was to develop and test methods
for producing spectral representations that corresponded more
closely to the nonlinear spectral representations that are provided
by the human auditory system.

Spectral representations of speech signals are chosen over i
time-domain representations because this type of analysis
approximates the kind of signal processing performed by the
peripheral auditory system of humans. The mechanical and neural
action of the basilar membrane and other cochlear structures
function to direct high-frequency signal components to the basal S
end of the cochlea and low-frequency signal components to the

7-9

e ,w~v



-. I.

WJK

i.4

n . ,4,

~R Offil-i-Ela

H. 4 -4

0 0

........ . . ...... .

. . . . . . . . . . . . . ..... - -
.. '.,. . .No

0 -co

<;~i'zw'-

io.,

% %



0 -hd
Z.. . .. . . . .

z 1

~ 4-W . Q)

.44 44. r- a

'~I. .. 1~A i 34 C

3 2 o 4

co1-4W

0 -a) UQ

r-. 44 (1

7-11I

N -'AN N N



L ~ ~ ~ .

J'i.-W"

4j co'
5 *,.........~-~ d

I-I
Pi).* ~"~* ~

Ir.~ '- 4
Vim" -r4Jo

:*CO (U d )

___ C) 4) co~

~~t j" -r-4 C) $4

0 ) 0 0

CO 4-4 4.) 4.) 4-

w 0 0 u u)
a' ) 0 0 ..

() 4-i tf)4-4 CM

4i 44 CU

1 0 0 4.2 4.)

(9 H m~ . 4C 0 0~ - > 0 '4-

)V

%S

7-12

* .~. .,,%~ ~evr%



-I-

- . S...... ..*! ...

,U

.4 Wi 0

<.

, 433k 0 v4
OR law.

443

o'N . N.

{ *t~3W~.... A.. ..... 7

.. ..... ............

0 hut

7-13



u di d

4-j

'c 4- c

*J d) 1,

:iti a b

E0 - H d

....... ... 94

.iC . 3 ......... C.o

> co

;'~ 
J. -1:'; 1 ' 

i

.) U c

p i Q) ~-

0 W

. ~ ~ ~ ~ .. ..-.... ) c
co 9: C-

0m

... .. .... . ..~

.~..::.. .. ~ .

7-14
:::."%d ~ ~ N % .i" -0d



0-........

E0 4- )

I...... .

0- (1 ) L)~ p-

.. .) .... ...U 1

ARM~~~~ -W 0p

0

MW~ r. 0 -

()) Q)
V) 0 r4-

..............

14- H

7-15

or -V '.P -

Mi IN %%



13,~

I. .. . .........

4R . IV r '-

., 3, 2~mw

- ' &U9

FIZZ:3 .~

.~. ~. ....

....... 0

..........

~% %



0 00

4-, Eii W -,AN4

5n,: 0 a)

m W

. .... . tk

....~ . ...

V.A.A 0' 410

*)A~0 CL

.:d 44 0
* ~ :. ~ 4 -

~b
0.~ 0 0)*

~~..- C.:- '

A R

*....r ..

tk4

~.4: ::

~ ~: yW~V:~W 7-17 ~

:1;.IN:'I,- M U
l ll , lj l 1 1 1 1 1 1 1 1 l



_ %%



00

-

0

0)

~0)W
>

c 0

-4)

E0

co a

a4 )

001

LU

%-- \

V*L L %

cn

7-19



obeya2Of

68

.0 1.0 2.0 3.0 10 6.0 0.0

*?requ~ney 0,.h.)

Figure 7-13. Waterfall display of a larger
segment of the utterance shown
in Figure 7-12.
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apical end of the cochlea. Tonotopically arranged fibers of the
auditory nerve then carry electrical signals that code the amount
of basilar membrane motion at particular locations along the
cochlea.

Power spectra calculated by FFT or LC algorithms provide a
rough approximation to this kind of frequency coding by producing
an array of numbers whose magnitudes are proportional to signal
ntensities in particular frequency regions. However, the

correspondence between FFT and LPC spectra and the kind of "neural
spectrogram" provided by the peripheral auditory system is known to
be only approximate. In a linear spectrum, frequency resolution is
constant across the spectrum. For example, a 128-point FFT returns
64 magnitude points and 64 phase points. Assuming a sample
frequency of 12.8 kHz (and therefore a signal bandwidth of 6.4
kHz), each of the 64 bins corresponds to 100 Hz. Despite the
popularity of linear spectra such as these, it is well known that
auditory spectra are non-linear; i.e., bandwidths are not constant
across the spectrum. Specifically, it is well known that frequency
resolution is better at low frequencies than at high frequencies.
As a consequence, spectral distance measures that use linear
spectra would be expected to underestimate the importance of
differences in the low frequencies and, conversely, overestimate
the importance of differences in the high frequencies.

Nonlinear spectra can be derived from linear spectra simply by
the appropriate summing of adjacent frequency bins in the linear
spectrum. To approximate the kind of frequency resolution in the
auditory system one would sum a small number of bins in the low
frequencies and a large number of bins in the high frequencies.
The main problem is to determine exactly what bins should be summed
to approximate an auditory spectrum. After experimenting with |
several different schemes, we have settled on a system based on the
mel scale. This scale was empirically derived from psychoacoustic
experiments involving pitch matching. A given distance along the
mel scale corresponds to specific change in perceived pitch rather
than a constant change in signal frequency. Figure 7-13 shows a
mel-scale waterfall-type display of the word "obey" using a
mel-scale transform of a linear FFT spectrogram. Figure 7-14 4
compares a 64-bin linear FFT of the midpoint of a vowel with a
30-bin mel-scale equivalent. Notice that frequency resolution is
relatively good in the low frequencies and relatively gross in the
high frequencies.

7.2.3 Evaluation

Diphone and word-recognition tests were conducted using a
template-matching system based on spectral differences. The
recognition tests compared the 64-bin linear FFTs with the 30-bin
mel-scale equivalent spectra. The results showed consistently
better performance for the mel-scale spectra. In addition, due to
the data reduction involved in reducing the 64-bin spectra to 30
bins, calculations with the mel-scale spectra are considerably
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faster than the 64-bin linear spectra.

7.2.4 Formant Tracking

It has been known for many years that formant frequency
patterns are one of the most important sources of phonetic
information in the speech signal. For this reason, a major goal of
our signal processing research is to develop algorithms to track
formant frequencies. Formants appear on spectrograms as broad
bands of energy. Although it is relatively easy for a trained
phonetician to pick out formants visually, it has proven to be a
difficult task to perform automatically. The errors that are
commonly encountered include failing to detect the presence of a S
formant, failing to detect when two formants merge, and spurious
detection of a formant where none exists. For example, if Fl and
F2 merge together the correct F2 may be missed, with F3 being
labeled as F2. Since recognition based on formants is very
sensitive to this labeling, such errors can lead to serious
mistakes. There have been many attempts at formant tracking, using 0
a variety of techniques. We have investigated several of these in
trying tc determine the best approach for our purposes.

most formant tracking methods in recent years have been based
on picking peaks from linear prediction spectra. Linear prediction
is a simple and powerful technique based on an all-pole model of
the vocal tract. New coefficients for the model are computed
approximately every 10-20 msec and used to generate a series of
spectra. The peaks of these spectra are the raw data for formant
tracking. The peaks are assigned to formants based on a set of
rules designed to make the formant trajectories fairly continuous.
A simple slot filling scheme due to Markel (1975) which we have
implemented appears to do a reasonable job. It is claimed that
this method is about 85% accurate, but there is no data available
to support this. A more sophisticated algorithm due to McCandless
(1974) uses 'anchor points' and more detailed rules, and claims to
achieve accuracies as high as 90%, but once again without any
documentation. This algorithm also uses spectral enhancement
techniques for resolving the problem of formant mergers. These
peak-picking methods are notable for the ease with which they
achieve fairly good results, but they suffer from some serious
shortcomings. They all depend on ad hoc rules, and are capable of
making serious mistakes by missing formant mergers or using
spurious peaks. In addition, since linear prediction models only
the vocal tract, nasalized sounds cannot be handled reliably.

Hidden Markov Models (HMMs) have been applied recently to the
problem of formant tracking by Kopec (1986). He has used HMMs in
which the states correspond to formant frequencies and the
observations are LPC codebook symbols. The models are trained on
hand-marked data from LPC spectrograms. The training process
generates the transition and observation probabilities, which serve
to effectively impose continuity constraints on formant movements.
Kopec claims his model to be about 90% accurate, and supports this
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with detailed experiments. Once nice feature of his method is that
he is able to make tradeoffs between spurious formants and missed
formants by varying a single threshold value. In addition, there
is no need for ad hoc rules. On the negative side, considerable
effort must go into training the model.

Another recently reported method, due to Niederjohn and Lahat
(1986), uses a bank of bandpass filters. A first estimate of the
formants is made based on the energy output of the filters. This
is followed by a statistical analysis of the consistency of the
intervals between successive zero-crossings at the output of each
filter. A decision function is applied to the data obtained to
yield the final formant frequencies. The interesting feature of
this technique is that it is designed to work in noisy
environments, where techniques such as linear prediction have
significant problems.

A number of auditory models have been proposed to enhance key
features such as formants. Seneff (1985) has incorporated a
synchrony detection measure that yields a pseudo-spectrogram in
which the formants are more sharply defined. She suggests a
gradient approach to tracking fcrmants, where the upper and lower
edges of the peaks are followed. This may prove to be a more
robust technique and may avoid some catastrophic mistakes. Another
perceptually motivated approach has been reported by Hermansky et
al. (1985). In this method an auditory spectrum is produced by
critical-band filtering followed by equal loudness curve
preemphasis and intensity-loudness conversion. A low-order
all-pole model is then used to extract Fl and F21.

We propose to combine several of these ideas into an expert
system for formant tracking. LPC analysis will be used for a first
pass, possibly preceded by some perceptually motivated processing.
This should give good results for voiced, non-nasalized regions.
!-he next step is to determine the trouble areas. Unvoiced regions
can be found by a simple ratio of high frequency energy to low
frequency energy. Nasalized regions are more difficult to
letermine, but there are a number of features (Glass, 1984) which
are characteristic. In addition, the results of the LPC analysis
are likely to be suspect in areas where the peaks do not form
zontinuous paths. To determine formants in nasalized regions, we
3lan to attempt a limited use of HMMs. A rule-based system will be
ised to coordinate all of these results to yield the final formant
trajectories.

7.2.5 Pitch Tracking

Voice pitch, or fundamental frequency, can provide important
information that is relevant to phonetic recognition, speaker
iormalization, syntactic class, and emphatic stress. Like formAnt
zracking, pitch tracking has proven to be a surprisingly diificult
?roblem. The most common pitch-tracking error is pitch doubling -- _
identifying the second harmonic instead of the fundamental
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frequency. This is a very serious error since the pitch value is
off by a factor of two when this confusion occurs. The problem can
not be remedied easily either by smoothing or by applying
pitch-continuity constraints because the conditions that create the
problem generally extend over several speech frames. Pitch
doubling occurs primarily because of the influence of the first
formant, especially for vocalic segments with low-frequency first
formants. When the first formant comes close in frequency to the
second harmonic, this harmonic can become strongly reinforced,
creating a strong periodicity in the output signal at a rate that
is twice as high as the fundamental frequency.

We have implemented a pitch-tracking algorithm based on the
technique described by Markel and Gray (1976) that attempts to
reduce the influence of the first formant through the use of
inverse filtering techniques. The SIFT (Simple Inverse Filter
Tracker) algorithm is a hybrid time-domain, frequency-domain
approach to the pitch extraction problem. The basic idea of SIFT
is to process a waveform in such a way that it will begin to
approximate the glottal source waveform; that is, the speech
waveform unmodified by the vocal tract resonances. A waveform of-
this sort has an approximately triangular shape. Given a waveform
of this shape, the period can be detected by autocorrelating the
waveform from 0 time lag out to approximately 17 msec time lag.
The resulting autocorrelation function will show the normal peak at
0 time lag, and another prominent peak at the time lag of the basic
period of a voiced sound. The criterion for existence of a peak in
SIFT is variable, being higher at short time lags (high FO), and
somewhat weaker at longer lags (lower FO).

T, pproximation to a glottal waveform is achieved in the
follow- way. A 31 msec segment of the original waveform is
taken. his segment is digitally low-pass filtered at
approximatel-, 1100 Hz, and is then down-sampled to 2.5 kHz by
taking every fifth point in the segment. This is done to save time
in the processing, since the higher-frequency components of the
signal are not of importance in this form of pitch extraction. The
resulting filtered and down-sampled segment is then
Hamming-windowed, and the autocorrelation technique of linear
predictive coding is used to design an inverse filter with 4
coefficients. These coefficients are used to filter the
down-sampled segment. This filtering is performed on the
unwindowed segment. The effect of these manipulations is to remove
(or reduce) the effects of vocal tract resonances on the waveform.
The resulting segment is then Hamming-windowed and its
autocorrelation function is computed as described above. If a peak
in the range 2.5 msec lag (FO = 400 Hz) out to 16.5 msec (FO = 60
Hz) is detected, using a variable threshold, it is considered to be
a candidate for a pitch period. Some additional logic is then used
to reject spurious peaks. SIFT reports a pitch value every 7.8
msec using a 31 msec analysis window, resulting in a 4:1 overlap.

The rms amplitude in decibels is also computed and saved, as
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well as the zero-crossing count. Voiced/voiceless decision-making
is based on rms amplitude, the zero-crossing count, and the shape
of the autocorrelation function. Typical voiced sounds average
about 6-10 zero crossings per 8 msec frame, while unvoiced sounds
usually show about 30-40 zero crossings per interval. By default,
SIFT will set the pitch of an interval to zero if the number of
zero-crossings is greater than 25, and/or the amplitude is less
than 30 dB. These default values can be changed by the user with
switches on the command line.

7.3 Automatic Phonetic Analysis
S

7.3.1 Background and General Approach

Despite the availability of powerful, high-speed digital
signal processing techniques, researchers have found automatic
phonetic analysis to be a very difficult problem. There is fairly
good agreement in the characteristics of the speech signal that
make automatic phonetic analysis a difficult problem. A thorough
understanding of these problems is essential, since the nature of
these complexities will impose very important constraints on the
design" of a phonetic recognition system. Described briefly below
are five problems that must be dealt with in any speech recognition
algorithm that intends to deal with continuous speech from multiple
speakers. The description is based on a discussion by Klatt (1980).

1. Acoustic-phonetic invariance: Because of the phenomenon of
coarticulation, individual speech sounds are often very
strongly influenced by neighboring speech sounds. These
effects are often very large and would seem to rule the most
straightforward template-matching approaches to detecting
phonetic segments.

2. Segmentation: Mental representations of words consist of
sequences of discrete phoneme-sized units. However,
spectrograms typically do not show evidence of discrete
sequences of speech-sound types. While some speech sounds such
as fricatives and stops show relatively clear acoustic
landmarks, others speech sounds, such as sequences of glides,
semivowels, diphthongs and nasals are extremely difficult to
segment since the speech-sound types have a strong tendency to
merge into one another. This makes it very difficult to locate
boundaries between segments, which complicates the process of
assigning phonetic labels to the signal. This is an especially
difficult problem for "continuous speech" systems; that is,
systems that do not require the speaker to pause between
individual words.

3. Time Normalization: The durations associated with individual
speech sounds are highly variable, being influenced by factors
such as: (1) overall speaking rate, (2) word- or
sentence-level stress, (3) locations of syntactic boundaries
and (4) the phonetic characteristics of adjacent speech sounds.

7-26



This variability in segment duration complicates the process of
pattein matcning. Methods must be found which either ignore
duration entirely, or allow comparisons to be made between
segments of different duration.

4. Talker Normalization: Individual talkers differ from one
another in a variety of ways, including differences in (1) the
length and shape of the vocal tract, (2) voice pitch and a wide
variety of other characteristics associated with the laryngeal
source, (3) strategies for implementing particular sequences of
coarticulatory movements and (4) a wide range of variation
associated with dialect differences. These variations seem to
cause very little difficulty for listeners, but very little is
known about the talker normalization process in humans.

5. Phonological Recoding: This refers to the application of
phonological rules that cross word boundaries. For example,
the final /s/ of the word "this" would generally be produced as
a palatal fricative (/sh/) in a phrase such as "this shoe."
English includes a very large number of rules of this type,
many of which cross word boundaries. These kinds of phenomena
will cause obvious problems when the phonetic sequence is
checked against entries in the dictionary. The problem cannot
be solved simply by adding another entry to the dictionary
because, in the general case, one would not want to accept S
"thish" for "this."

7.3.2 Template Matching versus Feature-Based Approaches

In general, there are two different ways in which the
front-end of speech-recognition systems might be handled. All
speech-recognition systems involve pattern matching of some-kind.
Some representation of the units that you intend to recognize --
words, phonemes, syllables, diphones, etc. -- have to be stored in
memory. Methods then have to be developed for measuring the
quality of the match between an unknown input utterance and the
templates that have been stored.

One of the most important questions that must be answered in
designing an automatic phonetic analysis system is to determine how
the units will be represented. Very broadly, there are two
choices. The first choice is to use the raw, unanalyzed spectrum
-- for example a linear predictive coding (LPC) or Fast Fourier
Transform (FFT) spectrum. Approaches that makes use of all of the
details in the spectrum are called "template matching" or
"low-level pattern matching." The second approach is called
'feature extraction,' and the basic idea is that, instead of using
the whole spectrum, decisions are made about what aspects of the
spectrum are most strongly associated with the phonetic"'
characteristics of the utterances. For example, a feature-based
system might make use of formant-frequency patterns to recognize
resonant sounds such as vowels and semivowels.
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The low-level template-matching scheme is the approach that is
used in single word, talker-dependent systems. The speaker trains
the system by producing each word in the vocabulary. The word
templates are stored on disk as a sequence of spectra -- usually a
vector of LPC coefficients that are sampled every 10 or 20 ms.
When unknown words are spoken, the system makes calculations of the
spectral distance between the unknown word and each word in the

template dictionary. The same kind of pattern-matching approach
could be applied to any size unit-- phonemes, syllables, diphones,
etc. The advantages of this approach are:

1. Low-level pattern-matching techniques are computationally
simple.

2. A very powerful method called "time warping" has been developed
to handle the time variability problem.

3. It has been shown to work quite well for relatively small
vocabularies and single speakers.

4. These methods do not try to make early decisions about what is
and is not important in the spectrum. They preserve all of the
spectral details and are therefore less likely to make
low-level errors that would be propogated upward to
higher-level modules in the system.

5. These methods do not require detailed knowledge in a variety of
areas in which our scientific understanding is incomplete. For
example, the feature-based approach will require the system
designer, in one way or another, to make explicit decisions
about what features or 'attributes' separate [r] from [1], (b]
from [p), nasal consonants from semivowels. In some cases we
will have incomplete knowledge of what these features are, and
in other cases the contrast may be controlled by information
that is very difficult to extract automatically.

But there are several drawbacks with this approach:

1. There is a general feeling that this approach is best suited to I
talker-dependent systems. This is because low-level approaches
preserve virtually all of the details of the talker's speech
rather than trying to extract just those aspects that are most
relevant to the phonetic content of the speech.

2. There is a general feeling that low-level pattern-matching is
best suited to small vocabularies. The reason is the same:
These approaches preserve spectral detail. If steps are not
taken to reduce data, these methods can become far too
inefficient with large vocabularies.

3. Low-level pattern-matching approaches fail to make use of a
good deal of information that is known about speech perception
-- for example, the importance-of formant frequencies in vowel
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perception.

Although we have done some experimentation with a
pattern-matching approach, the largest share of our work on
automatic phonetic analysis has involved a feature-based approach.
Despite the potential problems with feature-based analysis, it is
our feeling that this approach is more likely to succeed for a
system designed to handle continuous speech, multiple speakers, and
a large vocabulary.

7.3.3 Phonetic Recognition Using Multivariate Statistical Methods

A feature-based approach to automatic phonetic analysis
requires solutions to three kinds of decision-making problems. It
is first necessary to determine how to segment the signal into
units for later classification. It is then necessary to determine
what acoustic characteristics can be used to classify the acoustic
segments into phonetic categories -- i.e., what information can be
used to separate a /d/ from a /t/, a /w/ from an /r/, or an /s/
from a /z/. Once it is determined what acoustic information should
be used to make a particular category decision, it is then
necessary to decide where to set boundaries between phonetic
categories or, more generally, to assign scores to particular
acoustic segments that reflect the relative probabilities that the
acoustic segment is associated with a given phonetic segment.

Although this may seem at first to be the simplest of the
three problems, it has not turned out to be a trivial issue. The
decision-making procedure should meet at least two requirements.
First, it should place the boundary between two categories in a
location that minimizes categorization errors. Second, since
classification errors are inevitable, the algorithm should preserve
'graded' information about the degree of category membership, or
the probability that a particular set of measurements would be
obtained for a signal from a particular category. For example,
instead of simply setting an absolute threshold between /d/ and
/t/, it would be very helpful to have an algorithm that reported
that "the probability of /d/ is 80% and the probability of /t/ is
20%." A method that we are currently implementing attempts to meet
these two requirements using a multivariate distance measure (MVD).

A simple example will illustrate the basic approach that we
are using. Figure 7-15 shows measured values of voice-onset time
(VOT) measured from instances of /d/ and /t/ (VOT is the interval
from consonant release to the onset of voicing). VOT values for
/t/ (and all other voiceless stops) are generally longer than VOT
values for /d/ (and all other voiced stops). The simplest way to
separate the two categories would be to set a threshold at the
arithmetic mean of the two category means. A graded measure of the I

degree of category membership would be the linear distance of the
measured value from each of the category means. However, this
approach fails to make use of very important information about the S
relative variances of the two measurement distributions. For
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example, because of the unequal variances, the optimal location of
the threshold between these two categories would be the cross-over
point in the two probability-density distributions rather than the
mean of the two category means. Further, a more accurate measure
of the degree of category membership would be the number of
standard deviation units (i.e., z-score units) from each of the
category means. In addition to minimizing classification errors,
this method has the virtue of providing distance measures
(z-scores) that can be interpreted directly in terms of statistical
probabilities. Since this method uses a distance measure that is
normalized in terms of relative variance, the technique can be used
to compare distances from acoustic features with different
measurement unit. For example, acoustic differences on a temporal
feature such as voice-onset time can be either compared or combined
with differences on a spectral feature, such as the onset frequency
of the first formant, another feature that is known to be
associated with differences in stop-consonant voicing.

The example shown in the figure represents the simplest case
since the two categories are separated by measurements on a single
acoustic dimension. There is excellent evidence in the
speech-perception literature that human listeners make phonetic
decisions by combining information from several acoustic
dimensions. The pattern-classification method that we are
implementing applies the same basic logic to the multivariate case;
that is, where measurements are made on several acoustic
dimensions. The multivariate case can be handled either by: (1)
combining distance scores on several individual dimensions, or (2)
calculating a single distance score in a multi-dimensional space.
The first solution is computationally much simpler but, in theory,
the second approach should be more accurate, since it takes
cross-correlations among individual measures into account. The
method that we have developed uses the second approach: a single
multivariate distance measure is calculated that takes the
inter-parameter covariance matrix into account.

The measures that are calculated represent distances between
an unknown token (a point in an n-dimensional space) and the
centers of any number of underlying phonetic categories
(n-dimensional "elipsoids" in the n-dimensional space). Phonetic
recognition is accomplished simply by selecting the phonetic
category that produces the smallest distance with the respect to
the unknown token. The phonetic categories are defined by training
the system on acoustic feature values for known phonetic segments
from a relatively large data base of diverse talkers. The
distances that are calculated can be reported either as
multivariate distances in chi-square units, or as chi-square
probabilities. The chi-square probabilities represent the
probability that a set of measurements from an unknown token could
have been drawn from a given phonetic category.
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7.3.4 Speaker-Independent Vowel Classification

The research described below was designed to determine the
feasibility of using MVD in a speaker-independent phonetic
recognition task. Our first goal was to attempt to recognize
isolated vowels using voice pitch formant-frequency measurements
from a large data base consisting of 29 adult male speakers and 27
adult female speakers. The research was designed to answer two
questions: (1) can MVD be used to used to recognize vowels from a
large group of talkers with minimal information about the
individual talker, and (2) can MVD be used to determine the
combination of acoustic features that results in the most accurate
vowel-recognition performance.

The data base that was used in the recognition tests consisted
of hand-measured acoustic parameters from 29 adult males and 27
adult females collected at Bell Laboratories in a classic study by
Peterson and Barney (1952). The measures consisted of voice
fundamental frequency (f0) and the frequencies of the first three
formants (Fl-F3). Measurements were made from two repetitions of
each of ten vowels in the environment "h-vowel-d" (e.g., "heed,
hid, head, had, hod, hawed, hood, who'd, hud, heard"). The
acoustic measurements were made by hand from amplitude sections on
a sound spectrograph.

Fundamental frequency and formant frequency measurements from
the vowel [ae] are shown in Table 7-1. Also shown are four derived
measurements that provide information about the average acoustic
characteristics for a particular talker. These measures consist of
mean fundamental frequency (mf0), and mean values of Fl-F3 (mFl,
mF2, mF3). The averages represent mean values for a particular
acoustic measurement summed across both repetitions of each of the
ten vowels for a given talker.

Examination of the data in Table 7-1 shows the substantial
variability in absolute formant frequency values that is seen
across individual talkers. For example, the range of F1 values for
[ae] exceeds one octave (minimum = 514 Hz, maximum = 1110 Hz, range
= 596 Hz) and the range of F2 values is just under an octave
(minimum = 1470, maximum = 2560, range = 1090). Absolute formant
frequencies are quite variable even within a category of talkers.
For example, F1 values for [ae] within the group of female talkers
vary from 650 Hz to 1110 Hz, a range equal to about 3/4 of a
octave.

The formant frequency variability that is seen in Table 7-1 is
due to inter-talker differences in the overall length and specific
anatomical configuration of the vocal tract. Although the
relationships among formants are more stable than absolute formant
frequencies, normalization schemes based on formant ratios are only
moderately successful. Further, Fant (1973) has shown that the
scaling factors that relate the formant frequencies of one group of
talkers to another (e.g., adult males versus adult females) are
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Table 7-1. Measures of fundamental frequency (f0) and formant
frequency (F1-F3) for the vowel Cae] for each of 29 adult male
talkers and 27 adult female talkers from the Peterson and Barney
(1952) data base. Also shown are average fundamental frequency
(mf0) and formant frequency values (mFl-mF3) for each talker. The
designation "M-i" denotes male talker 1, first repetition;
"M1-2" indicates the second repetition for that talker, etc.
Dashes designate missing data.

Subject fO Fl F2 F3 mf0 mFl mF2 mF3

MI-l 93 630 1710 2400 106 498 1418 2329
M1-2 94 658 1755 2305 106 498 1418 2329

M2-1 100 630 1770 2350 109 486 1438 2256
M2-2 105 630 1642 2170 109 486 1438 2256
M3-1 128 690 1610 2560 139 491 1288 2508
M3-2 131 700 1690 2580 139 491 1288 2508
M4-1 133 620 1710 2110 123 463 1306 2389
M4-2 124 660 1800 2150 123 463 1306 2389
M5-1 132 740 1810 2970 137 489 1576 2422
M5-2 145 630 1750 2480 137 489 1576 2422
M6-1 143 830 1720 2180 135 538 1455 2191
M6-2 135 810 1670 2300 135 538 1455 2191
M7-1 120 680 1470 2280 122 481 1314 2311
M7-2 119 620 1580 2320 122 481 1314 2311
M8-1 133 680 1958 2542 146 550 1619 2564
M8-2 141 708 1840 2535 146 550 1619 2564
M9-1 125 688 1600 2300 130 462 1373 2324
M9-2 122 660 1570 2380 130 462 1373 2324
MI0-1 112 697 1610 2540 119 535 1451 2445
M10-2 114 684 1634 2510 119 535 1451 2445
Ml-1 140 560 1820 2660 165 481 1470 2401
MII-2 180 580 1670 2540 165 481 1470 2401
M12-1 121 550 1570 2600 126 423 1386 2634
M12-2 120 530 1610 2650 126 423 1386 2634
M13-1 114 628 1837 2570 121 491 1437 2484
M13-2 11 622 1890 2560 121 491 1437 2484
M14-1 143 740 1800 2450 166 534 1445 2490

M14-2 162 775 1810 2200 166 534 1445 2490
M15-1 119 676 1670 2540 122 541 1456 2526
M15-2 125 725 1687 2500 122 541 1456 2526
M16-1 143 600 2000 2570 161 504 1453 2328
M16-2 138 590 1950 2460 161 504 1453 2328 4
M17-1 107 514 2140 2600 106 466 1549 2449
M17-2 106 552 1800 2500 106 466 1549 2449
M18-1 110 660 1650 2500 126 506 1406 2444 6
M18-2 120 624 1700 2475 126 506 1406 2444
M19-1 131 680 1685 2620 135 503 1423 2743

7-33

111 10 IN 1 V V



Table 7-1, continued

M19-2 133 680 1705 2490 135 503 1423 2743
M20-1 145 725 1700 2425 143 518 1394 2418
M20-2 127 710 1650 2220 143 518 1394 2418
M21-1 ill 660 1600 2400 123 519 1418 2329
M21-2 120 720 1680 2430 123 519 1418 2329
M22-1 103 721 1680 2400 110 470 1384 2414
M22-2 109 750 1710 2440 110 470 1384 2414

M23-1 133 640 1773 2490 145 534 1482 2461
M23-2 133 640 1840 2560 145 534 1482 2461
M24-1 100 670 1860 2500 109 490 1433 2381
M24-2 100 670 1860 2500 109 490 1433 2381

M25-1 147 618 1735 2425 145 518 1429 2351
M25-2 123 615 1810 2400 145 518 1429 2351
M26-1 125 650 1738 2400 133 520 1528 2321
M26-2 130 663 1820 2400 133 520 1528 2321
M27-1 116 640 1620 2200 126 435 1326 2272
M27-2 118 650 1580 2360 126 435 1326 2272
M28-1 125 750 1610 2340 143 549 1437 2386
M28-2 136 770 1580 2350 143 549 1437 2386

M29-1 116 640 1710 2450 125 507 1444 2483
M29-2 128 592 1734 2480 125 507 1444 2483
Fl-I 225 1040 1960 2920 227 638 1632 2947
FI-2 220 1010 1980 3080 227 638 1632 2947
F2-1 243 950 1970 2890 254 629 1661 2759
F2-2 244 980 1950 2920 254 629 1661 2759
F3-1 233 700 2560 3150 240 602 1818 2843
F3-2 225 675 2510 3145 240 602 1818 2843
F4-1 171 806 1970 2600 209 558 1739 2713
F4-2 150 825 1860 2550 209 558 1739 2713
F5-1 205 823 2220 2870 222 562 1792 2886
F5-2 200 800 2100 2900 222 562 1792 2886
F6-1 222 1110 2160 2700 201 601 1624 2764 .
F672 214 1070 1920 2750 201 601 1624 2764
F7-1 171 773 2000 2870 187 548 1726 2883
F7-2 175 875 2100 2970 187 548 1726 2883
F8-1 230 690 2185 2990 231 555 1764 2813
F8-2 220 660 2200 3020 231 555 1764 2813
F9-1 167 790 2180 3020 249 605 1784 2950
F9-2 280 840 2160 3020 249 605 1784 2950
F1O-1 237 1020 1900 2960 251 613 1661 2804
F1O-2 233 1005 2050 2870 251 613 1661 2804
FII-I 192 845 1700 2300 204 560 1552 2459 yVKY
F11-2 187 860 1724 2530 204 560 1552 2459
F12-1 206 1008 1990 2870 231 645 1727 2864

F12-2 200 1040 2000 2800 231 645 1727 2864

F13-1 210 1010 2060 2900 223 581 1686 2740
F13-2 200 980 2160 2920 223 581 1686 2740
F14-1 188 750 2060 2770 184 532 1713 2664
F14-2 162 650 2110 2618 184 532 1713 2664

F15-1 236 873 2400 3060 252 590 1742 2963
F15-2 264 845 2380 3060 252 590 1742 2963
F16-1 187 940 2250 2760 206 559 1786 2779
F16-2 200 820 2200 2920 206 559 1786 2779
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Table 7-1, continued

F17-1 192 860 1920 2850 210 571 1614 2922
F17-2 200 800 1980 2810 210 571 1614 2922
FI8-1 233 860 2070 2880 250 571 1685 2848
F18-2 240 890 1920 2710 250 571 1685 2848
F19-1 224 784 1800 2750 231 572 1714 2721
F19-2 234 820 1750 2890 231 572 1714 2721
F20-1 218 808 2070 2880 225 570 1710 2765
F20-2 203 678 2420 3080 225 570 1710 2765
F21-1 189 850 1853 2685 202 579 1661 2582
F21-2 193 830 1800 2620 202 579 1661 2582 S
F22-I 205 900 2090 3000 214 589 1783 2837
F22-2 200 860 2160 2870 214 589 1783 2837
F23-1 225 1020 2030 2700 229 640 1776 2816
F23-2 225 1000 2200 2770 229 640 1776 2816
F24-1 212 710 2120 2600 212 551 1693 2541
F24-2 210 690 2250 2680 212 551 1693 2541
F25-1 194 810 1860 2620 246 556 1554 2678
F25-2 234 890 1800 2700 246 556 1554 2678
F26-1 200 960 2.00 3000 264 631 1798 3004
F26-2 217 822 2200 3260 264 631 1798 3004
F27-1 187 861 2100 2800 216 525 1614 2796
F27-2 224 896 2040 3000 216 525 1614 2796

S

0
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non-uniform and tend to show sizeable variations from one vowel
category to another. Fant's findings indicate that the vowel
normalization problem is not analogous to the relatively simple
problem of transposing melody into a different key. This would
seem to rule out normalization schemes based on the application of
uniform scaling constants.

The recognition test using MVD and the Peterson and Barney
data base was designed to address two questions:

1. Can MVD be used to classify vowels from a large group of
male and female talkers?

2. Can MVD be used to determine what sets of acoustic
parameters and parameter representations should be used to
recognize vowels across talkers?

Using MVD involves training the program on each phonetic category
to be recognized (the ten vowels in the present case) and then
measuring distances between unknown tokens and each of the phonetic
categories. For each unknown token, MVD reports both a distance
and a chi-square probability to all ten vowel categories. The
token is assigned to the category w.'tn the smallest distance (or
highest probability).

Both the training and testing phases can make use of the
entire data base, or any subset o the data base (e.g., only male
talkers, or a random half of the talkers). Further, the system can
be trained on all of the acoustic parameters in the data base, or
any subset of the parameters. The second of the two questions
listed above is addressed by determining which combination of
parameters produces the best recognition performance.

7.3.5 Results of the Recognition Tests 5 0

Results of the recognition tests are shown in Tables 7-2 and
7-3. The data in Table 7-2 represent recognition accuracies using
exclusively internal information; i.e., information that describes
the characteristics of a particular token (i.e., some combination Y
o fundamental and formant frequencies) without reference to any
information that describes the characteristics of the individual
speaker. The data in Table 7-3 represent recognition accuracies
based on parameter sets that make use of both internal and external
information, where external information consists of a measurement
or set of measurements that describe the characteristics of an
individual speaker. The external information is intended to
normalize for differences across talkers. Examples include average
fundamental frequency and average formant frequencies. In an
actual recognition system, the normalization information would be
gathered in a brief pre-enrollment session in which the speaker
would be asked to produce a small number of standard utterances.
Alternatively, the system could be designed to operate initially in
a fully speaker-independent, and could then adapt to the individual
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Table 7-2. Results of recognition tests using a multivariate distance
measure (MVD) and acoustic measurements of ten vowels from the Peter-
son and Barney (1952) data base. MVD was either trained on all of the
talkers in the data base (29 adult males and 27 adult females) and
tested on the same set of talkers, or it was trained on a random half
of the takers (i.e., the' odd-numbered talkers) and tested on the other
half. The acoustic paramter sets represent various combinations of
voice fundamental frequency (f0), the frequencies of the three lowest
formant (Fl-F3), formant ratios (Fl/F2, Fl/F3) and log spectral dis-
tances (e.g., log F2 - log Fl). All of the results shown in the table
represent recognition based exclusively on internal information;
i.e., parameter sets that describe the characteristics of the unknown
token without reference to any information that describes characteris-
tics of the individual speaker (e.g., average pitch, average formant
frequencies, etc.).

Training Testing Percent I Acoustic
Set Set Correct I Parameters

all all 81.2 Fl, F2
odd even 79.5 Fl, F2
all all 85.5 Fl, F2, F3
odd even 84.2 Fl, F2, F3
all all 89.5 fO, Fl, F2
odd even 88.6 fo, Fl, F2
all all 88.9 fO, Fl, F2, F3
odd even 88.5 1 fO, Fl, F2, F3
all all 77.5 Fl/F2, Fl/F3
all a"_l 69.9 logFl-logf0, logF2-logFl
all all 80.7 logFl-logf0, logF2-logFl, logF3-logF2

-----------------------------------------------------------------------------
-----------------------------------------------------------------------------4)
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Table 7-3. Results of recognition tests using a multivariate dis-
tance measure (MVD) and acoustic measurements of ten vowels from
the Peterson and Barney (1952) data base. The data represent re-
sults for parameter sets that involved combinations of both
internal and external information; that is, acoustic information
describing the token and acoustic information describing the char-
acteristics of the talker. The internal information consisted of
various combinations of voice fundamental frequency (f0), the fre-
quencies of the three lowest formant (Fl-F3), formant ratios
(Fl/F2, Fl/F3) and log spectral distances (e.g., log F2 - log Fl).
The external information consisted of average values for a particu-
lar talker, e.g., mean fundamental (mf0), or mean formant frequen-
cies (mFl, mF2, mF3). For all of the results shown below, MVD was
trained on all 54 talkers, and tested on the same set of talkers.
Although not shown in the table, recognition accuracy was also
tested for conditions in which MVD was trained on a random half of
the talkers, and tested on the other half. (See text for details.)

Percent I Acoustic
Correct I Features S

89.7 Fl, F2, mfO
88.4 Fl, F2, F3, mfO
91.7 Fl, F2, mFl
91.2 Fl, F2, mF2
88.3 Fl, F2, mF3
94.4 Fl, F2, mFl, mF2
94.5 Fl, F2, mfO, mF1, mF2
93.9 Fl, F2, mf0, nF1, mF2, mF3
93.5 Fl, F2, F3, mFl, mF2, mF3
93.1 Fl, F2, F3, mfO, mFl, mF2, mF3
93.8 Fl, F2, mFl, mF2, mF3
82.7 Fl/F2, FI/F3, mFl, mF2
82.3 logFl-logfo, logF2-logFl, mFl, mF2
92.1 *FI, F2, mFl-[aiu], mF2-[aiu]
93.5 **FI, F2, mFl-mid, mF2-mid
90.6 ***Fl, F2, Fl-(i], F2-[i]

--------------------------------------------------------------------------
--------------------------------------------------------------------------

*Averages based on measures of the "point" vowels [a], [i] and (u3.
**Averages based on measures of three central vowels.
***Normalizing information consisted of F1 and F2 of the vowel [i).
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speaker after a sufficient amount of speech had been analyzed to
allow estimation of average pitch and formant frequency values.

Table 7-2 shows the results for a variety of parameter sets
that rely exclusively on the characteristics of the unknown token,
without reference to any external speaker information. One issue
that is addressed by the data in Table 7-2 concerns the degree of
overlap between the training tokens and the test tokens. The
entries labeled "all" in the table represent results for tests in
which there was complete overlap between the training tokens and
the unknown test tokens; the entries labeled "odd-even" represent
results for tests in which there was no overlap between the
training and test tokens. In every case, the system performs
better when there is complete overlap, but the drop in performance
is relatively small (0.4 - 1.7%, mean = 1.1%). These findings are
encouraging since they indicate that system performance should
remain good even when MVD is trained on one group of talkers and
tested on another group.

Recognition accuracies for the 100% overlap entries vary from
a minimum of about 70% to a maximum of just under 90%. Although it
is well known that vowel perception by human listeners is very
strongly associated with variations in Fl and F2, this simple
parameter set yielded only moderately good performance (81.2%).
The inclusion of F3 improved performance somewhat (85.5%), but it
was primarily the addition of pitch information (f0) that resulted
in recognition performance approaching 90%. In fact, when fO was
included, MVD performed slightly better without F3 (89.5%) than
with F3 (88.9%).

The last three entries in Table 7-2 represent an attempt to
represent vowels in terms of formant relationships rather than
absolute formant frequencies, as has been suggested by a number of
investigators. The first attempt tested Minifie's (1973) idea of
representing the ratio of Fl to F2, and Fl to F3. The last two
entries represent an attempt to test Miller's (1982) idea of
representing distances between formants in logarithmic dimension.
It can be seen that none of the approaches based on formant
relationships worked as well as the straightforward parameter set
consisting of absolute values of f0, Fl and F2. These results are
somewhat surprising since: (1) schemes based on formant
relationships are appealing on intuitive grounds, and (2) it has
been shown that both of these approaches work well when tested on
parameter values averaged across a given talker group.

Although not shown in Table 7-2, data were gathered to compare
recognition accuracy on male versus female talkers. It was found
that the system performed very similarly on the two groups.
Averaged across all 11 conditions in Table 7-2, MVD yielded 82.5%
correct on male talkers, and 83.7% on female talkers. Absolute
male-female differences on individual parameter sets averaged 1.8%, PL
and did not exceed 3.1%.
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For all of the data shown in Table 7-2, male and female 6
talkers were mixed, and no attempt was made to make use of in-
formation about the talker's sex. It was anticipated that MVD
performance would improve if the system were trained and tested
exclusively on male talkers, and then trained and tested exclu-
sively on female talkers. This turned out not to be the case.
For example, with the parameter set consisting of fO, Fl, F2, MVP
performance with In-class training/testing was identical to per-
formance when male and female talkers were mixed. This finding
is encouraging since it indicates that good performance does not
require an apriori determination of the sex of the talker.

It is very clear from Table 7-2 that voice pitch significantly
improves system performance. For example, recognition accuracy is
about 81% with Fl and F2 alone, but improves to just under 90% with
the inclusion of pitch information. There are two very different
hypotheses regarding the importance of pitch information.
According to Miller (1982), voice pitch is an integral part of the
timbre of vowels, and therefore must be included in the parameter
set describing this class of sounds. However, another possibility
is that voice pitch serves primarily to provide indirect
information about the acoustic characteristics of the speaker, and
therefore functions primarily as a normalizing parameter. The
reason is that voice pitch is strongly correlated with vocal-tract
size. Therefore, when pitch information is included, MVD is
essentially able to compare talkers with similar vocal-tract
characteristics. If this is the case, it should be possible to
find other acoustic characteristics, such as average formant
frequencies, that are more strongly correlated with vocal-tract
size, and might therefore function better as normalizing
parameters. The data presented in Table 7-3 show the performance
of MVD using a variety of different combinations of both internal
and external information -- that is, combining information about
the characteristics of the token and the characteristics of the
talker.

It can be seen that there are a variety of feature
combinations that produce recognition accuracies in the 90-95%
range. It can also be seen that average F1 and F2 -- alone or in
combination with one another -- produce better recognition
accuracies than average fundamental frequency. A very simple ,
parameter set consisting of Fl, F2, mean Fl and mean F2 yielded
94.4% <1> correct recognition. The addition of average fundamental
frequency yielded nearly identical performance (94.5%). It can
also be seen in Table 7-3 that the schemes based on formant
relationships (formant ratios and log formant distances) perform
only moderately well even when normalizing is included.

<1> This figure is virtually identical to the 94.5% correct
performance of a panel of 70 human listeners who were asked to
identify vowels from the same set in the original Peterson and
Barney (1952) study.
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For all except the last three entries in Table 7-3, mean frequency
values for individual talkers were based on averaging all ten
vowels in the data base. The last three entries in the table
represent attempts to calculate normalizing information based on a
smaller subset of the data base. For example, "mFl-[aiu)"
indicates a measurement of mean formant frequency based on an
averaging of F1 values from the vowels [a], [i] and [u] only (the
vowels in "sod", "seed" and "sued"). This particular set was
chosen because these vowels represent the articulatory and acoustic
extremes of the English vowel space. It has been suggested that
the so-called "point" vowels might be used by listeners to
normalize for acoustic differences resulting from variation in
vocal-tract size and configuration (e.g., Gerstman, 1968). It can
be seen that MVD performs quite well (92.1%) using formant averages
computed from these three vowels. However, performance is actually
slightly better (93.5%) when averages are made from three
centralized or "mid" vowels (the vowels in "bed, "bird" and "bud").
In fact, the last entry in the table indicates the recognition
accuracy is quite good (90.6%) even when the normalizing
information consists only of Fl and F2 of the vowel [i]. In
general, the results from the last three entries in Table 7-3
suggest that the system should perform well even when normalizing
information is obtained from very limited samples of speech.

7.3.6 Error Analysis: Preliminary Results

An important goal for future work with the MVD technique is to N
analyze the kinds of errors produced by the recognition system. It
is clear from the results above that MVD is capable of relatively
high recognition accuracies when information about the unknown
token is combined with information about the acoustic
characteristics of the talker. It is also clear, however, that
recognition errors are inevitable with this or any other phonetic
recognition system. For this reason, when the inevitable errors
occur, it is highly desirable that the algorithm choose a phoneme
that is phonetically similar to the correct phoneme. This is an
important issue since error recovery at higher levels of the
recognition system is a much simpler matter if incorrect phonetic
segments are related in predictable ways to the correct segments. S

Table 7-4 presents a confusion matrix -- a table showing how MVD
distributed both correct and incorrect classifications -- for a
parameter set consisting of Fl, F2, and average Fl. All values are
in percent, and correct choices are shown along the diagonal.
Analysis of the error patterns in Table 7-4 suggests that when MVD -
makes errors, it is very likely to choose a vowel that is
phonetically similar to the correct vowel. For example: (1) when
the input is "eh" ("bet") all of the errors are in the adjacent
vowel categories "ih" ("bit") and "ae" (as in "bat"), (2) when the
input is "uw" ("boot") all of the errors are in the adjacent
category "uu" ("book"), and (3) when the input is "iy" ("beet"),
all of the errors are in the adjacent vowel category "ih" ("bit"). S
These very logical error patterns should make it much simpler to
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Table 7-4. Confusion matrix showing the distribution of correct
and incorrect choices made by the MVD recognition algorithm using a
parameter set consisting of Fl, F2 and mean Fl. All values are in
percent; correct responses are shown along the main diagonal. The
results indicate that when MVD makes errors, the incorrect vowel is
always phonetically similar to the correct vowel.

VD Output

ae ah aw eh er ih iy uh uu uw
ae 92 0 0 8 0 0 0 0 0 0
ah 0 90 5 0 0 0 0 5 0 0
aw 0 4 95 0 0 0 0 1 0 0
eh 4 0 0 89 0 7 0 0 0 0

Input to er 1 0 0 0 94 0 0 0 0 5
MVD ih 0 0 0 9 0 91 0 0 0 0

iy 0 0 0 0 0 4 96 0 0 0
uh 0 9 4 0 0 0 0 87 0 0
uu 0 0 0 0 0 0 0 0 89 11
uw 0 0 0 0 0 0 0 0 8 92

S

..
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design a higher level module of the recognition system to recover
from phonetic recognition errors.

7.3.7 Summary of MVD Recognition Tests

A multivariate statistical distance measure (MVD) was developed and
tested on a large, multi-talker data base consisting of fundamental
frequency and formant frequency measurements from two repetitions
of each of ten English vowels produced by 29 male talkers and 27
female talkers. A number of derived measurements were also made
which represented the acoustic characteristics of the particular
talker (e.g., average fundamental frequency and average formant
frequencies.) MVD was either trained on all of the talkers in the
data base and tested on the same set of talkers, or trained on a
random half of the talkers and tested on the other half. Further,
the system could make use of all of the acoustic measurements, or
any subset of the measurements. The results of the recognition
tests included the following:

1. Recognition accuracies as high as 90% were obtained using
exclusively internal information; i.e., acoustic measurements
of the unknown token itself, without reference to any
information describing the characteristics of the individual
talker. The best internal parameter set consisted of f0, Fl,
and F2.

2. Recognition accuracies as high as 95% were obtained when
internal information was combined with a very small amount of
normalization information describing the characteristics of the
individual talker. The most successful parameter set consisted
of Fl, F2, mean F1, and mean F2. However, there were a variety
of other simple parameter sets that yielded recognition
accuracies exceeding 90%.

3. The most accurate recognition was achieved when average values
for individual talkers were based on an averaging of frequency
measurements from all ten vowels. However, very good
performance could be achieved when normalizing information was
obtained from a much smaller set of speech samples. For
example, 93.5% correct identification was achieved when formant
averages were obtained from just three vowels, and 90.6%
identification was achieved when formant averages were obtained
from a single vowel.

4. A very small decrement in performance (1.1%) was observed when
MVD was tested under conditions of no overlap between the
talkers that were used to train the system and the talkers who
were used to test the system.

5. Performance of MVD was virtually identical for male and female
talkers. Further, it was shown that MVD did not need to be
trained separately on male and female talkers.
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6. Error analysis showed that when classification errors occurred,
the incorrect token was always phonetically related to the
correct token. These error patterns should facilitate the
design of a higher level module of the recognition system to
recover from phonetic classification errors.

7.3.8 Segmentation

As indicated in the introduction to the section on phonetic
recognition, segmentation is one of the most difficult problems in
automatic phonetic analysis. The reason is that individual speech
sounds often merge into one another, meaning that clear acoustic
boundaries between phonetic units arc only occasionally present.
In general, there are two possible approaches to the segmentation
problem that might be referred to as explicit and implicit
segmentation. In explicit segmentation, the signal is first passed
through an acoustic segmenter that hypothesizes starting and ending
times for unlabeled phonetic units. These acoustic segments are
then passed to other modules for labeling. Implicit segmentation
does not involve an separate segmentation stage. Pattern-matching
techniques are used to determine the quality of the match between a
given portion of an utterance and a dictionary of templates.
Segmentation decisions are made post-hoc based on the range of
speech frames over which the utterance and template match. We are
currently exploring both explicit and implicit approaches to
segmentation. Two explicit segmentation schemes will described
briefly below.

Figure 7-5a shows a segmentation scheme based on a very
straightforward measure of the rate of spectral change. The
program calculates the bin-for-bin difference between the current
(smoothed) FFT spectrum and and another spectrum some number of
frames downstream. A step size of 10 msec was used for the
"spectral derivative" function shown in Figure 7-5a, based on the
word "obey." It can be seen that the function shows peaks at the
onsets of the two vowels, and a trough at the juncture between the
first vowel and the consonant. The function is also relatively
flat within the consonant and vocalic segments.

We have also experimented with a more complex segmentation scheme
called the "association waveform," based on the work of Glass and
Zue (1986). The algorithm attempts to "...associate a given frame
with its immediate past or future..." (Glass and Zue, p. 26) using
correlational techniques. Although the algorithm is much more
complex, we have found that it produces functions that are very
similar to the simple spectral derivative calculation describedabove. %

If we choose to pursue one of these explicit segmentation schemes
in favor of an implicit segmentation scheme, it will be necessary
to develop methods for setting spectral-change thresholds for the
detection of segment boundaries. This will be done by collecting a
large body of statistics on the characteristics of spectral change

%%
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within and across segment boundaries. Probabilities could then be
assigned to spectral-change functions using the multivariate
statistical techniques described above under the section on segment
labeling.

7.3.9 Measurement of Phoneme Distance

Since the phonetic string generated by the acoustic-phonetic module
is errorful, procedures for error recovery are essential. To a
large extent, errors can be handled by designing an
acoustic-phonetic that generates relative probabilities rather than
segment labels. The lexical module can then hypothesize all
phonetic labels whose probabilities exceed a certain threshold.
However, in order to handle case of labeling errors in which the
correct label's probability does not exceed this threshold, it is
necessary to incorporate general measures of phoneme similarity.

The phoneme similarity measure that we have developed is based
directly on measured perceptual similarities between phonemes. The
matrix is based on perceptual confusion data reported by Miller and
Nicely (1955), which were then submitted to multidimensional
scaling analysis (Shepard, 1980). This matrix, shown in Table 7-5,
correlates strongly with simpler phoneme distance measures that are
based on the number of shared phonetic features. However, the
matrix that is based directly on measured perceptual similarities
is able to capture certain similarities that are not predicted by
the feature approach (e.g., [b)-[v] and [p]-[f]).

7.3.10 Future Directions

Two relatively large-scale studies are planned as a follow-up
to the multivariate classification work that was carried out with
the Peterson and Barney (1952) data base. The two most significant
findings from the work with the Peterson and Barney data base are:
(1) the multivariate statistical approach to phonetic
classification is capable of very high levels of recognition
accuracy when tested on a large and diverse group of talkers, and
(2) the technique offers a very powerful way to determine
empirically what combinations of features produce the best
recognition accuracies. However, there are two important
limitations to these findings. First, the fundamental frequency
and formant frequency data were measured by hand. This was crucial
for the initial tests since the simplification enabled us to yJ

separate the problems of recognition and feature-set selection from
the low-level, feature-extraction problems. However, future work
will incorporate the automatic pitch and formant-tracking methods
that we are developing, described in Section 7.2. The second
limitation to the vowel-classification results is related to the
fact that the acoustic-feature measures were essentially static --

that is, the measures represented a single spectral slice of the
signal. Obviously, the recognition system will need the capability
to analyze patterns whose feature values change over time. A S
project that is just underway is aimed at extending the MVD

7-45

.* " - -. - - .. ,,,, .- - . ,h

ArA %



S

Table 7-5. Phoneme-to-phoneme similarity matrix based on a multidi-
mensional scaling analysis (Shepard, 1980) of Miller and Nicely's
(1955) data on the perceptual confusions among English consonants.
The numbers are in arbitrary units. (Note: th- = voiceless th;
th+ = voiced th.)

k p t f th- s sh v th+ z zh g d b m n
k
p 10
t 16 17
f 34 24 38 0
th- 32 22 33 10
s 42 32 33 10
sh 51 44 37 50 40 24
v 69 60 69 38 38 39 60
th+ 81 71 80 50 49 46 65 13
z 88 78 83 61 57 48 60 23 18
zh 108 98 103 82 78 68 77 43 36 22
g 102 93. 100 72 71 66 80 35 22 21 23
d 107 97 106 76 77 73 89 38 27 31 31 12
b 77 68 80 43 47 53 75 17 22 40 57 38 37
m 83 77 93 56 78 79 113 54 63 80 97 78 73 21
n 100 93 109 70 65 90 103 58 62 80 92 71 64 42 21

k p t f th- s sh v th+ z zh g d b m n

-- ----------------------------------------------------------------

S
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technique to vowel classification in dynamic context; that is,
utterances-in which parameters changes over time.

The plan is to measure the F1 and F2 formant frequencies every
10 to 20 msec for appropriate sample words. Two other parameters
that will be used are the mean of Fl and the mean for F2 for each
speaker. The mean, variance and covariance matrix will then be
calculated for each point along the track. The words used will
be of the consonant-vowel-consonant form, manually labeled and
segmented. Initially, seven classes of vowels will be looked
at, with each class containing approximately 60 samples of a vowel
sound. Additional classes will be investigated that combine vowels
with the consonants [1, m, n, r], since these combinations tend to
cause more problems than others. This model should work well with
classes of diphones. As with the MVD, the DMVD (Dynamic
Multivariate Distance Measure) will produce both relative and
absolute chi-square probabilities of the combinations.

One new problem which arises is the time alignment of these
sampled tracks. Fortunately, there has been an important
breakthrough in the past few years by the development of the
Dynamic Time Warping technique. This process attempts to time
align tracks by compressing portions of each track to reduce the
overall sum of distances between the two segments. Time alignment
has proven to be very successful in aligning tracks out of
sequences by as much as 150 msec.

A second goal for the coming year will be to extend the MVD
technique to other speech-sound classes. Although we have tested
the technique only on vocalic sounds so far, the classification
algorithm should work with all classes of speech sounds. Pilot
data that we are now collecting represent an attempt to extend MVD
to fricative detection and classification. The study will be an
extension both of the MVD vowel-classification study described in
this section, and of the expert-system approach to fricative
classification described in Section 7.4. The expert system
attempted to model human spectrogram reading abilities and
identified a number of spectrographic features that used by
spectrogram readers in classifying the place-of-articulation and
voicing properties of fricatives. Left unresolved by that study
were several issues related to: (1) calculation of some of the .. ,

acoustic features that were found to be important for fricative
recognition, (2) setting numerical thresholds between categories,
and (3) normalizing for differences in phonetic context and talker.
After developing the appropriate feature-extraction algorithms, we
plan to use MVD to address the threshold and normalization
problems. The overall strategy and design of the study will be
similar to the speaker-independent vowel-classification work

described in this section.

A third goal for the coming year will be to determine what
level of formant-frequency measurement accuracy is needed attain
relatively high levels of phonetic-recognition accuracy. It is
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quite clear that formant-tracking errors of a 5 or 10 Hz are
unimportant, and that errors of several hundred Hz are almost
certainly very important. However, as far as we are able to
determine, no study has addressed the question of the relationship
between formant-frequency measurement error and phonetic-
recognition accuracy. With the Peterson and Barney data base and
the MVD classification algorithm, we are in an excellent position
to address this important issue. Our plan is to use a
random-number generator to introduce specific amounts of error in
the formant-frequency data, and then to measure the effects of
these errors on phonetic-recognition accuracy.

7.4 Expert System for Phonetic Classification

7.4.1 Background

Human speech can be viewed as the conversion of muscular
energy to acoustic energy. The muscular energy is used to induce a
pressure change in the vocal tract and set the air into motion. It
can then be used to regulate the flow of air or modify the sound
waves (Catford,-1957).

After the airflow is generated, it passes through the
laryngeal cavity, which consists of the larynx, vocal bands and
glottis (Francis, 1958). Vibration of the vocal cords by the
passing air, is known as voicing. The air then passes through the
pharyngeal cavity where it can be routed through the oral or nasal
cavities. Each of these can be vibrated and has its own resonating
characteristics. In the oral cavity are the articulators,
structures which break up or interrupt the air flow (Denes, 1975).
The upper articulators consist of the upper lip, the upper teeth
and the entire roof of the mouth including the alveolar ridge, the
palate, and the velum. The lower articulators include the lower
lip, lower teeth and tongue which is divided into areas called the
tip, blade, front, dorsum and root (Catford, 1957). By employing
these structures, the airflow can be altered to create a variety of
sounds. Sounds have features that bear a direct relationship to
the articulatory gesture which produced the sound.

Although the number of possible sounds is enormous, the actual
number of basic sounds in a given language is quite restricted. In
English there are about forty basic sounds, referred to as
phonemes. Each phoneme has distinct properties according to the ...
place of articulation, manner of articulation and voicing. These
features serve to classify the phonemes.

Manner features are indicators of how the sound is made. A
stop sound, as in the beginning of the word "to", is produced when e
the airflow is actually stopped. Pressure is built up and then
released. A fricative is characterized by turbulence caused by a -.
constriction in the airflow. The /f/ sound in "foo" is a
fricative. Nasals are created when the nasal cavity is brought
into play and can be heard in the consonant sound in the word "no".
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Glides and liquids are sounds produced by forming some constriction
in the vocal tract. The constrictions are smaller than those for
vowels, but are still large enough so no turbulent noise is
created. The sounds found in the beginning of "woe" and "yet" are
typical of this class.

The place features of a sound refer to the position of
articulatory mechanisms during the production of sounds.
Labio-dental, alveolar, palatal, velar, dental, and palato-alveolar
are terms used to describe the place features of the consonants,
implying involvement of the lips and teeth, alveolar ridge, palate,
velum, teeth, and palate and alveolar ridge respectively (Denes,
1975).

Many of the basic sounds have voiced-voiceless cognates,
sounds that have the same place and manner features, but the vocal
bands are vibrated when creating one of the cognates. Adding
voicing to a voiceless sound creates a new sound. As an example,
the /s/ sound is a voiceless fricative with /z/ as its voiced
cognate.

Although phonemes have been studied for some time, the
greatest advances have been made since the 1940's when the sound
spectrograph was invented. This device makes visible records of
the fundamental dimensions of speech: frequency, intensity and
time. This record, called a spectrogram, is produced using 5
frequency as the vertical axis and time as the horizontal axis.
Variations in intensity are depicted by the darkness of the
pattern. S

7.4.2 Spectrogram Reading

A spectrogram displays spectral manifestations of physical
speech producing actions (Figure 7-16). A stop is viewed on a
spectrogram as a silent gap of about 20 to 150 msec, flow and is IN
frequently followed by a burst of energy. A fricative, on the
other hand, is generally signaled by a broadband noise lasting
about 80 to 200 msec. Voicing is sometimes seen as a low-intensity
band of low-frequency energy. Vowels, which are sounds made in a
relatively unconstricted cavity, are indicated on a spectrogram by
horizontal resonance bars called formants. Relationships between
these formants are clues to the identity of the individual vowels.

Trying to determine the utterance recorded in a spectrogram is
not a simple task. Speech produces a complex acoustic signal that
contains extra-lingual material as well as the linguistic message. e
Speaker attributes such as physiology, sex, age, emotional state,
and even whether the speaker is suffering from a cold, may be
reflected in the speech signal. To complicate matters further,
speech signals will differ not only from speaker to speaker but % -F
also in repetitions of the same utterance spoken by the same h
speaker (Hecker, 1971).
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In addition, in continuous speech basic sounds are combined,
causing a blurring of boundaries and properties of the individual
sounds. This effect is referred to as coarticulation. In
analyzing connected speech, one must be careful to distinguish
coarticulatory effects from speaker variability (Hecker, 1971).
Each phoneme has unique articulatory and acoustic properties which
change with the phonetic environment. This overlap of phonetic
information in the acoustic signal makes the spectrogram difficult
to interpret and prevents a simple template matching solution (Zue,
1985b). When sounds are made in continual speech, the motions of
the structures involved are continual. Templates made in
disconnected speech are not truly representative of the sound as
found in conti4nual speech, as the patterns do not reflect
coarticulatory effects.

To determine the phonemes in a spectrogram, boundaries that
pinpoint changes in spectral composition must be determined. Next
these segments should be labeled by classifications such as
fricatives, stops and vowel-like sounds (Fant, 1957). Each of the
segments is analyzed according to its classification. There are
cues that help spectrogram reaers identify the particular phoneme
present in a segment. The information found in consonant segments
tends to be more reliable than that found in vowel segments, as
vowels suffer more from coarticulatory effects. Therefore it is
usual to identify the consonants first and then use that
information to help identify the vowels.

Many rules about phoneme spectral patterns are known, but to
be used effectively the reader must know when to apply these rules
and when to ignore them. Visual features may occur in spectrograms
for a variety of reasons. The duration of a sound could be a clue
to the identity of a phoneme, but could also indicate stress or the
voicing feature of an adjacent sound. Some vowels are short by
nature, like the schwa, while others can become shortened because
of their environment. Vowels are known to be shorter when
preceding a voiceless sound than when preceding a voiced sound
(Potter, Kopp, and Green, 1966). Stressed vowels tend to be longer
in duration than unstressed vowels, and if a final syllable is
unstressed, its duration is quite short (Klatt, 1976). Also,
certain consonant clusters significantly abbreviate or totally
delete a member consonant. While a /t/ sound is classified as a
stop, in the word "butter" the /t/ sound is usually pronounced as a
fast stop as closure is not complete. The characteristics of the
sound are significantly different from the stop /t/ and it is known
as a flap.

With all the problems inherent in reading a spectrogram, the
multitude of rules which must be selectively applied, there are
those who have hypothesised that it is not possible to train a
person to read them effectively (Klatt and Stevens, 1973). To
settle this controversy, an experiment designed to assess a
person's ability to read unknown utterances from spectrograms was
conducted at Carnegie-Mellon University in late 1977 and continued
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in early 1978 (Cole, Rudnicky, Zue, and Reddy, 1980). Victor Zue,
a leading researcher in the field of speech recognition who began a
systematic study of spectrograms in 1971, was chosen as the subject
who would attempt to identify utterances from their spectrograms.

Zue's task was to identify the phoneme strings represented by
23 spectrograms of utterances by two male speakers. First he
identified segment boundaries and then labeled them phonemically.
Three trained phoneticians also transcribed the utterances, but
they did so by listening to them. As transcription is not an exact
science, certain guidelines were agreed upon. A segment was said
to exist when two of the three phoneticians agreed on its
existence. When Zue was not sure of a phoneme label, he gave a
second choice. His labels agreed with at least one of the
phoneticians 85% of the time. As the average agreement among the
phoneticians was only about 90%, Zue's performance was good.

Observation of this performance led to the conclusion that
phonetic segments can be identified by characteristic visual
patterns. Zue's extensive knowledge of the effects of .
coarticulation on these patterns was deemed instrumental in the
interpretation of the spectrograms (Cole et al., 1980).

Further evidence exists in the presentation to the 1979
International Conference on Acoustic Signal and Speech Processing
by Zue and Cole. They cited the results of a thirteen week course
in acoustic phonetics that trained five spectrogram readers with a
combined accuracy of 80%.

Their experiments demonstrated that phonemes are accompanied
by acoustic features that are recognizable on a speech spectrogram,
and that with sufficient training it is possible to learn enough
about these features, and the modifications they undergo in fluent
speech, to read a spectrogram of an unknown utterance (Zue and
Cole, 1979).

Although phonemic recognition is a subjective task, the
utterance can be identified even from the imperfect transcription.
In the experiment using Victor Zue as a subject, the phoneme
sequences were examined by a linguist who was able to identify all
but 5 words from the fifteen utterances. Therefore using phoneme
identification as a step in a speech recognition project provides a
firm platform from which a linguist can do word recognition.

7.4.3 Expert System for Fricative Classification 0

The goal for this project was to build a phoneme recognizer
using the data available from spectrograms and the methods used by
spectrogram readers. Gathering information on the
spectrogram-reading process is a difficult task. A few books,
manuals and papers do exist on the methodology (Potter et al.,
1966; Fant, 1957; Zue, 1985), but there is no exhaustive listing 0
of the process. There is a large number of well-established rules
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concerning coarticulation and its effects on a visual
representation of speech.

Two speech scientists in the Rochester area agreed to serve as
informants for the expert system project. Robert Houde is a
recognized authority in speech science and speech signal
processing. He has been working in the domain of speech since 1957
and received his Ph.D. in communications science from the
University of Michigan in 1967. Dr. Houde founded the Center for
Communications Research in 1970, an organization researching
concerns of the deaf. In 1983 he started Speech Recognition
Systems, Inc. (SRS), and has been attempting to build a speaker
independent continuous speech recognition system. Although Dr.
Houde has been working with spectrograms for many years, he has not
made a practice of reading them.

The services of Dr. James Hillenbrand were also available.
Currently a research scientist for the RIT Research Corporation,
Dr. Hillenbrand received his Ph.D. in Speech and Hearing Science
in 1980 from the University of Washington. He has been involved in
research in speech acoustics and speech perception since 1975.

Background research took a good amount of reading as a wealth
of knowledge about speech is available. Once a basic understanding
of the domain was achieved, a meeting took place with both experts.
Knowing that the task of recognizing all the phonemes was well
beyond the scope of a Master's thesis, it was decided, upon Dr.
Houde's recommendation, to attempt recognition of the fricatives.

Although the fricative classification sometimes includes the
/h/ sound, Zue's description of phoneme classifications state this
sound is an aspirant and does not fit easily into any category
(Zue, 1985). Knowing this and the fact that spectrogram readers
usually detect /h/ sounds by the effect on formant transitions and
not because of frication (Potter et al., 1966), the decision was
made to omit /h/ from the fricative list.

The first version of Fric assumed that all fricatives would be
positively identified and that the system would be interacting withr--
an expert looking at a spectrogram. This totally interactive
system guided the expert in doing feature extraction on the
spectrogram. The design aim of Fric was to replace questions to
the expert with automatic routines that could answer these
questions by analyzing the information provided by SpeechTool
(Section 7.2).

When the experts interacted with this version of Fric, a
number of questions were raised about the intent of the program and
the reasoning behind it. One problem that was identified at this
point was that of ambiguous terminology. For instance, when asking
about the amount of total energy in the sound segment, the system
asked, "Is the sound weak or strong?". Weak and strong have
phonetic connotations that caused the expert to think the system
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was asking about something other than how much energy was in the
signal. It is possible to have a strong fricative with a small
amount of energy.

Subsequent interviews were held with only one of the experts
at a time. During these sessions the expert read spectrograms and -
was questioned about his reasoning techniques in an attempt to
formulate the rules and control strategies needed for Fric. These
sessions were taped to minimize loss of any information.

The next interview took place at Dr. Houde's place of
business where he was recorded reading spectrograms for about an
hour and a half. Knowledge about reading spectrograms was gained
as well as guidelines about choosing sample utterances. It was
necessary to separate similar utterances to prevent Dr. Houde from
template matching. His work tends to use template matching as a
fundamental concept and though Fric's strategy was to avoid that
approach, Dr. Houde tended to use it whenever possible.

When reading spectrograms Dr. Houde would frequently use
knowledge that would not be available to Fric. He knew the focus
was on fricatives, and this slanted his answers. He also used his
knowledge of the English language to fill in gaps in the
transcription of the spectrogram. The following are quotes of the
interview with Dr. Houde on 4/7/86.

And there's a fricative here because there are
fricatives everywhere.

So maybe this says "if this", and this is
all front vowel too, so this is strong so this
could be "is". Maybe "if this is iii" and I
could put a t on the end just because it would
make linguistic sense. "if this is it", but I
don't have any other reason to put the 't' on
it. I don't think that is a 't'.

When the sample utterances were single words, Dr. Houde's
ability to transcribe the utterance phonetically diminished. This
can be attributed to the inability to use any higher level
knowledge. It was decided that the next set of examples should be I
words strung together without making sense, so these higher level
knowledge sources could not be used.

Dr. Houde's requests for subsequent sessions included a scale
of 6 KHz on the spectrogram rather than the 4 KHz in use because
many strong fricatives ( /s/ or /z/ ) contain most of their energy
above 4 KHz. Dr. Houde could discern the presence of these strong
fricatives by the amount of total energy, which is shown in another
graph, the sum function, even though there was no corresponding
darkness on the spectrogram. Also requested was a print of the
spectrogram made with the time scale set so individual pitch
periods could be seen. When the compressed time scale made it
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impossible to detect periodicity, Dr. Houde was unable to tell if
a sound was voiced.

This request indicated that although voicing may have many
effects on a sound, one criterion, periodicity, was enough to
discern voicing. During the background research many of the rules
concerning voicing used its presence as a prerequisite condition
leading to a particular consequence. What the system needed and
now had was a rule which said if a certain acoustic phenomena is
present, then one can conclude voicing is also present. Dr. Houde
explained that he had a number of people working for over a month
trying to develop a good algorithm to detect periodicity in the
waveform, but was finally satisfied with the output. Consequently
later efforts were concentrated on finding ways to discern the
place of articulation.

Subsequent interviews required reading spectrograms that were
designed to elicit specific information. The evolving set of rules
was:

Discriminate between weak and strong fricatives.

If strong, look at the pattern to see where the energy is
concentrated.

If weak, take a guess.

Look at waveform periodicity to detect voicing.

Dr. Houde could not discriminate among weak fricatives by any
method other than template matching. If a weak fricative had been
previously identified, he would compare its spectral composition
with the segment under question. As template matching is not a
desirable method in a speaker independent system and expert
spectrogram readers have no need of templates, the next interview,
which was held with Dr. Hillenbrand, attempted to find rules that
would help to discriminate between weak fricatives.

From this interview came the idea that the spectrogram was
really a reflection of the movements of the articulators. Dr.
Hillenbrand is so aware of how structures move to create speech
that he can follow that motion in the formant transitions.
Watching the changes in formant directions was the key to
distinguishing among the weak fricatives.

7.4.4 Rule Generation -

All the knowledge gained from interviews needed to be embedded
in a program. RuleMaster, a software tool for building expert
systems, a product of Radian Corporation, was used to implement
Fric. The RuleMaster expert system building package contains two
principle components: Radial, an interpreted language for S
expressing and executing rules, and RuleMaker, which induces Radial
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rules from example tables.

RuleMaker removes the duty of rule generation from the
shoulders of the system builder because, given specific examples,
it can produce a rule to cover the situation (Reise and Zubrick,
1985). Intelligent editors are included to aid in the development
of example tables and the special files needed to implement the
hierarchical control of the expert system. "INDED" works with
induction files that include the example tables and "SYSED" helps
to manage the overall structure of the system.

Each module is provided with the ability to feed information
to the explanation facility. This facility allows the user of the
system to ask why certain information is being requested or why a
conclusion was reached. The explanation supplied is dependent on
the system structure and creator supplied intent statements. The
suppression of certain information can be achieved if the system
designer feels the information will confuse the user rather than
explain the actions of the system.

The Radial interpreter can interface with external routines
written in a variety of programming languages and with external
information sources other than programs such as databases,
instruments and other computers. This provides a powerful
interface to existing machinery and programs that may already be in
use. Fric is to interact with routines that can do feature
extraction from a spectrogram.

The final version of Fric is a refinement of the first
interactive system. This final Fric begins to answer some of its
own questions. To determine the identity of a fricative phoneme,
Fric first asks the user some basic information about the segment
in question: the name of the file containing the utterance and the
time boundaries delimiting the segment. Then a C routine is called
that determines whether the amount of energy in the segment
designates a strong or weak fricative. Inquiries are made about
the spectral shape of strong segments, to be sure they are not weak
segments that have a lot of energy. The threshold to determine
weak or strong was set very low so no strong fricative would be
misclassified as weak.

When a segment is classified as weak, Fric asks questions
about the formant transitions to determine the place of
articulation. The module dealing with segments labeled as strong
first asks for limits that will act as boundaries for expected
areas of concentrated energy and then uses a C routine to determine
where the concentrations of energy are. These boundaries are
needed as input as the areas of concentrations differ significantly
for male and female voices. \.\

Once the place of articulation is determined, information is
requested about voicebars and periodicity in the waveform. This
establishes the presence or absence of voicing. When the place of
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articulation is known and a determination on the presence of
voicing has been made, enough information exists to uniquely
identify a fricative.

7.4.5 Performance Testing

The amount of testing Fric was subjected to was limited by the
memory requirements of the speech data. The data files require
approximately 190 Kbytes for 1 second of speech. The system on
which Fric was running had been operating at about 97% capacity for
months; consequently few data files could be generated at one
time. Testing was successful in indicating shortcomings of the
system and showing this approach to be a valid method for phoneme
identification.

The testing process involved obtaining speech data by having
various speakers talk into a microphone in a relatively noise free
environment room for test phrases. The utterances (Table 7-6) were
well-articulated samples of continuous speech and some single words
which were then processed by SpeechTool. Because the segmenter
which will supply Fric with data has not been designed, it was
unreasonable to attempt to duplicate non-fricative data which could
be mistakenly sent to Fric. Therefore no data with a low
zero-crossing rate, which is considered non-fricative, was used.

A total of 43 fricatives from 4 speakers, three male and one
female, were identified by Fric. An identification was considered
correct when Fric classified the sound as a single phoneme and the
classification agreed with that of the tester.

Correct identification was made 60% of the time. Included as
incorrect were cases where Fric did not have enough knowledge to
decide between competing candidates and therefore gave two choices
as to the identity of the phoneme. Of the identifications
considered incorrect, 41% were classifications which gave correct
information about the segment, but did not identify it as a single
phoneme. It is reasonable to assume that with more knowledge
gained from continuing the interview process, more of these general
classifications could be narrowed down to a specific phoneme.

Of the incorrect identifications, 41% were strong fricatives
that were misclassified as weak by the C routine. There are two
possible remedies to this problem. One is to lower the energy
threshold required to classify a segment as strong and the other is
not to overlook the implications of the spectral shape when the
segment is classified as weak.

Since spectrograms of male voices are known to be easier to.y i
read, it was reasonable to expect Fric to function better with male
voices. Indeed, in utterances by male speakers, fricatives were
correctly identified 74% of the time whereas with female speakers
the correct identification rate was only 37%. 6
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Table 7-6. Utterances used in the fricative-:recognition
tests.

speaker fricatives noisy sounds identified phrase
male 2 2 2 six
male 5 5 4 three free Sunday shows
male 2 1 1 five

female 4 4 2 .fathom zoophyte
female 2 2 0 six
female 4 2 1 shove biff over
female 4 4 1 thin feathers
female 2 2 0 thither
female 2 2 2 five
male 4 4 3 six of these
male 3 1 1 shove biff
male 5 5 3 sue fixed the glass
male 5 5 3 the fifth oaf is
male 4 4 3 vote then fresh

Test Phrases

7

0
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Most of the errors that were made with female voices were
because of a poor initial diagnosis of the amount of energy in the
speech signal. Apart from the threshold problem previously
mentioned, this misdiagnosis could be due to the processing of the
speech signal. SpeechTool accepts energy up to 6 KHz for
processing, but many female voices have ranges up to 8 KHz. Since
the strong fricatives (/s/ and /z/) have a concentration of energy
in the high frequencies of the speaker's range, it is possible that
the concentrations expected for strong fricatives from female
speakers are being cut off by the processing of the data passed to
Pric. With this amount of the speech signal missing, the sound is
identified as weak. In order to remedy this problem, SpeechTool
should work with frequencies up to 8KHz. 6

Even with these problems, Fric could identify some weak
fricatives as particular phonemes that one expert could only label
as weak. This feat was a result of the power of gaining knowledge
from multiple sources.

7.4.6 Conclusions

One major advantage of this approach was seen during testing.
Many of the template matching solutions have trouble when the
segmentation is not precise. Expecting precision from the
segmenter is somewhat unrealistic as boundaries between sounds are
not often clear. When identifying segments, it was found the S
boundaries could be changed without effecting the performance of
Fric. Since this system looks for specific features, details about
the segment can be changed without affecting the identification of
the segment. Fric not only functions as a fricative recognizer,
but also shows that this approach to phoneme recognition is well
worth implementation.

7.5 Phoneme Database

A critical component of the system is a "phoneme" database
that stores pairs of intermediate strings and words. Our studies
have shown that an average of five phoneme strings is needed for
each word in the system's vocabulary to account for difference in
pronunciation. This means that even for a moderate vocabulary, a
large database is needed to store all the ways of "saying" the
words in that vocabulary. The implementation of that database and
its retrieval speed, then, are critical in constraining the
approaches to be tried for the organization of the word builder,
not to mention the performance of the final system.

The work done to date on the design of this database has
centered on alternative approaches for its physical layer. Since
the only critical function is retrieval, a full blown database
management system is neither necessary nor desirable. Therefore,
work has focused on random access retrieval strategies like
inverted files, indexing and various hashing techniques.
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The main problem in matching phoneme strings to words is the
"fuzziness" of the phoneme strings. As described in section 7.1.2,
a given phoneme string might consist of very certain sounds mixed
with uncertain sounds. In its first version, the retrieval module
will not deal with this fuzziness, but it will instead be a "dumb
but fast" retrieval of a word given a string of exact phonemes.

If retrieval of exact phoneme strings can be done fast enough,
the word building module that provides the phoneme strings to look
up in the lexicon can be organized around a generate-and-test
strategy. This module, then, would hypothesize all possible exact
phoneme strings for a given fuzzy phoneme string, look each of them
up in the lexicon, and collect the words that matched.

If retrieval speeds become a bottle neck, however, a smarter
retriever that deals with uncertain phonemes on a lower level will
have to be considered. However, we still anticipate the need for a
low level dumb-but-fast retriever to act as the actual interface to
the lexicon database. It is not clear yet how close to the actual
retrieval module the uncertainty handling mechanisms will have be.

The design being completed at this time for the physical
structure of the lexicon is basically an inverted file organization
augmented with special hashing techniques to speed up retrieval.
We estimate that retrieval speeds on the available hardware will be At
sufficient to provide a reasonable chance of success for a
generate-and-test word builder module.

IS
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